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Abstract Large simulation models of envirconmental systems which are based on biological and physical
mechanisms are usefiul because of their ability to integrate diverse types of information relevant to the
problem under analysis. Inherent in such models is a high degree of both stuctural and parametric
complexity. in a number of sudies using such models, which have also used the Regional Sensitivity
Analysis concept. it has been found that there are many paramcier seis which produce good fits to
calibration data. This lack of uniqueness requires a different perspective on parameter estimation which can

be usefuily addressed employing computer-intensive methods of multivariable statistical analysis.

1. Intreduction

In 1977 [ came to Australia to spend a sabbatical
year in Peter Young's group at the Centre for
Resource and Environmental Stadies of the
AN, There were a varicty of projects going on
at CRES at that time that afforded interesting
opportunities for visitors like myself as well as
an atmosphere of activity and  vigorous
discussion, Not surprisingly. a topic of central
interest concerned the appropriaic perspectives
and methods to bring 1o the analysis of
environmental systems. (iven Peter Young's
interests, there was a focus on time  series
methods and  something of a philosophical
aversion to large simulation models. To some
gxient this stemmed from the perception that the
degrees of freedom available to fit the field or
experimental data were, in some sense, gxcessive,
Ag I recall, most of us subscribed to the view
that, given a large mode! with lots of parameters,
it was possible 1o fit any date set free of
pathology with a little judicious fiddling.

George Hornberger was also at CRES on
sabbatical that year and, aficr some patticulardy
vigorous discussion which I now only vaguely
recall, he and 1 decided o seck a counter exampie
and select, ol of one of the then current CRES
studies, a problem that might be eclocidaied
through the use of a simulation model based on
physical, chemical and biological principals. A
perfect opportunity was presented by a CRES

project which involved data infegration and
analysis from several other groups studying a
eutrophication problem in the Peel-Harvey
Estnary of Western Australia, At that time the
Peel Iniet study was coming towards the end of
the first phase of collection of field data including
hvdological data, information on the nuisance
algae, data on nuirient sources, and surveillance
data on the levels of nuirients in the inlet as well
as algal biomass and phyioplankton levels. etc.
The planning and resource allocation issue that
was on the immediate horizon concerned
identifying where the remaining data gaps might
be, and conversely, in identifying those areas
where enough was already known.,

I review this history here because the Peel Inlet
gxample contains most of the generic issues that
one must deal with in the analysis of a large
class of eavironmental problems and, of course,
thas investigation has conditioned how I continue
to regand these issues. First and foremost is the
role of the model as information integrator. The
great attraction of the kind of simulation model
based on the physics, chemisiry and/or biology
of the problern under investigation is that i can
be used to integrate three guite different types of
information, The first of these is the set of
causal hypotheses that describe our current
undersianding of how different processes  and
variables are inter-related.  For example, the
Michachis-Menton  formulation  of  enzyme
kinetics has often been used {0 describe the



uptake by algae of nutrients from water and thelr
conversion into hiomass. Hence, the structure of
a simulation model using such clements is a
synthesis of a set of mathematical descriptions of
how the system is assumed to function and how
ong part depends on or influeaces the other.

Secondly, simulation models can incorporaic
existing information, ofien from the literature,
on the range of values of parameters that may be
relevant to the current application. This is
because, for the most part, these parameters have
a clear experimental interpretation. Indeed, many
of the parameters in these models are exactly the
parameters that are measured and reported in the
literature of the various scientific specialties that
underpin environmental modeling studies.

Finally, this class of simulation models can
integrate what might be termed macroscopic daa
on the behavior or performance of the sysiem
under study. 1 think about this in the sense of
state variables or that observable set of measures
of the state of the system that exemplify the
behavior that one is trying to understand or
control. It is at this level that classical parameter
estimation operates i.¢. given a structure and a
set of input-output data, find a set of parameter
estimates which minimize some error criteria. In
some contexts, this step is called "calibration.”

2. Regional Sensitivity Analysis: =a
Different Approach to Calibration and
Goodness-of Fit

In addressing ourselves to the Peet Indet problem,
Hornberger and 1 guickly came to understand that
there was more information available to us in the
first two of the above categories than in the third.
That is, the literature contains a great deal of
information on  the causal relationships
underiying aigal proliferation and accumulation,
nutrient limitations, light extinction coefficients
and the myriad other factors ang processes related
to the problem wvnder study. Similarly, the
literature was rich in data directly or indirecty
refating to the values of the parameters of models
that were very similar in siructure (o those which
appeared snitable for our purposes. Conversely,
when one began t0 accumulate data collected
from or directly related to the Peel Harvey system
itself, thcy were a good deal more limited.
Moreover, these data were very diverse in format.
There was good time series data on  tidal
fluctnations in water level in the inlet, river
hydrographs were available, and good data existed
on incident solar radiation and meteorological
varigbles, On nuirient levels in the waler

column or in the benthos, algal and
phytoplankton biomass, and data on the growth
characteristics of the particular alga, data was
much more limited, both  spatially and
temporally [Hornberger and Spear, 19801

It became clear that a good way 10 incorporate all
of this information was first to develop one or
more models based, in this case, on prior
assumptions regarding the identity of the
Hmiting nutrient.  We called each of these a
scenario and devoted our initial  attention (o
phosphorous, We chose to use a ‘tumped
parameter model specific to the area we defined as
the “growth area” which wmmed out o W
comprised of 5 nonlinear, ordinary differential
equations with 19 parameters. Because of the
nature of the data from the literature on parameter
values it was obvious thai point estimaies were
not defensible and the uncertainly and variability
in the parameter values was best described by
statistical distribution fanctions. This was not a2
new idea. We also incorporated the data on solar
radiation and similar time varying inputs in a
siraightforward way. The new idea came in the
means we ¢hose to incorporate the sparse field
data relating to the seasonal variation in algal
bipmass, phytoplankion jeveis, and nutrient
concentrations, those variables which defined the
gutrophication problem. We felt that the spatial
and temporal sampling patterns were simply not
sufficiently dense to provide reliable data points
to which we could curve-fit the model output in
any defengible way. Rather, we discussed with
varipus of the ficld scientists what it was about
this system that chamcterized its problem
behavior. This evolved into a set of six
conditions on the state variables of the svstem
that allowed us to classify any simulation, with
parameters randomly dawn from the prior
digtribuiions, as mimicking the behavior of the
system or not doing so. This classification was
alsc assigned to the parameter vector which gave
rise to it. This was our version of a generalized
goodness-of-fit criterion 10 be used in  site-
specific calibration [Spear and Homberger, 1980)].
That is, we specified a model struciure and
associated parameters which pertained to a large
class of eutrophication problems which were then
made specific in the contexi of the data from a
particular site,

After collecting a large number of vectors, each
appropriately classified, we then camried out a
posterior analysis which was  focused on
identifving the subset of parameters which
appeared 10 be responsible for achieving good
simulations. This procedure has come to be



called Regional Sensitivily Analysis {R5A). The
power of the method arises from  the
classification notion. Visualize the sitvation
geometrically by considering each element of the
p-dimensional vector of allowable parameter
values to be independently and uniformly
distributed over the interval {0,1], that is, the
prior parameter space can be defined as the unit
hypercube without Ioss of generality. Any point
within the hypercube can be identified as leading
0 a good or bad simulation by running the
model with the corresponding parameter vector
and applving the classilication criteria to the
oaiput so produced. Hence, the model and the
classification criterion provide 2 means of
dividing the hypercube into two regions, one
associated with good simulations and the other
with bad. The information available from the
approach is contamed in the problem-specific
inferpretation of the observable features of these
iwo regions,

fn the Peel Inlet study and in most applications
of the R5A concept, the posierior analysis has
been confined to viewing the goodbad resalts
from the perspective of the univariate marginal
distributions. For example, if F(xy) is the prior
digtribution of the ith element of the parameier
vector, x;, then one asks i F{xl3) = F(xiB).

that is, do the conditional distributions show any
difference under the good/bad mapping.  If such
difference can be discerned by an appropriate
statistical (est applied to the sample disiribution
functions, then ¢vidence exists that x; i an
“important”™  or  a “sensitive”  parameter,
However, it was realized from the outset that this
index of sensilivity is a sufficient, but not
necessary, condition for sensitivity. One can
envision various types of parametric interactions
that would not be observable from the univariate
marginal distributions, a fact that motivated
multivariable analysis as early as the Peel Inlet
stundy. Howsver, neither in that study nor since
has conventional multivariable analysis of the
parameter vectors been particolarly revealing.,

3. Unigueness

An important differonce between the Pecl Inlet
study and all of the other applications of R5A
that our group has camied out, concerns the
fraction of the total number of simulations that
result in good outcomes or “passes”. In the Pesl
Inlet case this fraction was sbout 45%. In all
subsequent studies, it has been a to stuggle fo
achieve nombers as high as 5%. The worst case
we have cncountered was 20 passes in 2.6
mithion simulations. In 2ll of these subsequent

cases there was some minor pruning of the range
used in the very firsi runs, but for the most part
these ad hoo adjustments, which were always
based on the univariate marginal distributions,
were very modest, e.g. H0% to 20% reductions in
the range of one or two distributions out of 20 to
25. The intercsting observation has been that,
even before the pruning, the univariate marginal
distributions of passing parameters extended over
the entire allowable range for almost all
parameters and, afier the prune, across the entire
range of all parameters. We have never seen
gvidence that the passing parameters occupied a
single well-defined region internal to the
hypeicibe which might arise, for example, from
a multidimensional normal distobution centered
at some interior peint,  However, we have made
explorations of the conncciedness of the pass
region using nearest neighbor metrics of several
sorts which suggzest that the pass region is
generally a single connected region. The general
observation that “good” simulations can be found
over almost the entire range of any single
parameler clearly implies a lack of uniqueness.
That is, there is not a single point in the
patameler  space  associated  with  good
simutations, indeed there generally is not even a
well-defined region in the sense of a compact
region inferior to the prior parameicr space. The
two obvious responses io this observation are
cither to reiterate that this is the generic problem
with big simulation models or, conversely, that
the definition of a good simulation is too loose.
We carricd oot a variety of studies in the late B0's
that bear on the “goodncss-of-fit” issue in the
context of more traditional parameter estimation
procedures. One  provides a  particularly
struightforward  ilustration of the unigqueness
issue.

In the feld of environmental foxicology a
problem of much contemporary interest congemns
the relationship between external measures of
human or animal exposure, like concentration of
the chemical in the breathing zone, and the dose
delivered to the internal site of foxic actiom,
termed the receptor. It is common fo address the
issue of distribution and metabolism vsing what
are called physiologically-based, pharmacokinetic
models, PBPE models for short. These are sets
of conpled ordinary differential equations, usually
with a few nonlinear terms in which each state
variable corresponds to the concentration of the
chemical or 2 metaboliie in some body region,
e.g. “poorly perfused fissue” as shown in Figure
1. The attraction of the PBPK model is that the
parameters  comrespond 1o physiologically
meaningful gquantities, for exampie, blood flows
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to the various compartments like the liver or the
bone marrow or blood-air partition coefficients
for the chemicals in question. Hence, there exist
sets of semi-standard parameters for various
animal species and humans although within-
species variability in these parameters is usually
acknowledged, if seldom addressed.
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Figure 1: Schematic representation of the
physiologic model uwsed to simulate the
distribution of benzene. ¥V, volumes: F, flows:
P, partition coefficients.

Because benzene is a chemical of much interest
amongst my foxicological colleagues  at
Berkeley, our group developed and explored the
usefulness of PBPK models to aid in the
elucidation of the mechanisms by which benzene
causes leukemia in  humans. Following
toxicological #radition, we began with a mt
model becaose of the extensive daia on
distribution and metsbolism in that species.
Animal data of this sort usually relates to the
conceniration of benzene in each compartment at
various times as a result of a pre-determined
exposure patiern which may range from single
injections {0 inhalation exposures over periods of
hours 0 days. A small number of animals are
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sactificed at each sampling period and tissue and
blood levels measured. Hence, each data point is
the average level in a small nomber of animals,
typically three to five, and as such subject to
significant variability. Typical data and some
simulation results are shown in Figure 2,
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Figure 2: Benzene concentration in the [at of
Fischer 344 raty dwing and after a & hour
exposure {0 490 ppm benzene in air,

Cur benzene distribution model was comprised of
5 compartments and 24 parameters with several
nonlinear elements [Bois, et al.,, 1991} Two
other groups had aiso developed PBPK benzene
models of similar structure and with similar
parameters [Medinsky et al., 1989, Travis et al.,
1990}, However, their method of parameteri-
zation foliowed standard PBPK practice which
involved fixing all parameters exceps those of the
nonlinear elements governing metabolism in the
liver which were varied until the best fit was
achieved, (We were all using the same published
expenimental data sets on benzene distribution in
Fischer rats.) Tn contrast, we followed the initial
steps of the RSA procedwe and deveioped
biochemically and physiologically  plausible
ranges for each of the parameters. We then
decided to contrast the {it obtained by the other
investigators with what could be oblained from a
Monte Carlo search over the ranges of all 24
parameters. A log-likelihood index of goodness-
of-fit was used.

We ran 1000 Monte Carlo simulations of which
200 had better fits, as measuwred by the log-
likelihood index, than those obtained using the
parameter values of the other investigators. Any
of these 200 Monte Carlo parameier sets yielded
an accepiable fit to the experimenial data by



conventional standards.  Moreover, as we had
seen in other applications, the 200 values leading
to acceptable fits extended over the entire range of
gach of the parameters. For a number of
parameters this simply implies a Jack of
sensitivity and for others, the presence of a

SiTOng COVAriANCce Structure,

The issue of the covariance structure among the
elements of parameter vectors leading to
acceptable simulations is a very inferesting issue.
This is particularty true in light of the previous
observation that it is usually difficalt to obfain a
high fraction of acceptable simulations. For
example, in a recemt application of R3A io
mosquitc  population  dynamics related o
arboviral diseage transmission, Eisenberg et al.
{1995a} obtaincd only about 1% passes of
acceptable simulations. Returning 1o the unit
hypercube as the prior parameter space, we may
interpret the {raction of good simulations to be
the volume of the hypercobe occupied by
accepiable parameter vectors, ‘v"g. Then, 1- Vg is
a measuie of the information gained between the
prior and the posterior spaces, although it 18 not
a measure independent of the dimension of the
parameter space. A unigue parameter set has a
Vg of zero and complete information has been

gained on the parameterization of the model.

4, Describing the Space of Accepiable
Fits

The challenge, of counrse, is o describe the
parameter space leading to acceptable fits 1o the
output data. Whatever the criterion of acceptable
simulations may be, our work over the years has
shown the space of good parameler vectors (o be
very complex and not usefully described by
raditional statistical methods. That is, we seem
not 1o be dealing with hyper-ellipsoids or other
macro-geometries of the sort which underlie
principal components analysis or other standard
muliivariate statistical procedures,  Qur first
exploration of new computer intensive methods
was an application of the CART technique in our
benzene work [Spear, et al., 1990]. CART is a
non-analytic, computer intensive procedure which
feads to classification rules based on ineguality
constraints applied to individual parameter values
or 10 lnear combinations of parameters,  The
issue in the benzene application was to sce if
calibration of the model separately to each of
three different experimerial data sets would be
associated with the same region of the parameter
space. I so, the model and the associated
parameter space had captured the content of all of

the data avalable to us in this form of meia-
anaiysis.

The application of CART involved asking if to
analyze the three scts of good parameter vectors,
one set from each calibmation experiment, axl
attempt to find rules that would allow one to
discemn which experiment a particolar vector came
from. CART found this to be a trivial challenge.
Figure 3 shows the CART tree which resulted.
On the basis of only three parameters it was able
to discern which experiment a parameter set came
from with very low misclassification error. One
of these parameters was alveolar ventilation rate,
which was not 100 surprising, in retrospect, since
the two inhalation experiments used different
methods of benzene administration and there was
alsc a substantial altitude difference between the
two laboratories at which the work was camed
out.
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Figure 3 CART diagram from three
experiments. Node 1 contains only passes, 307
from experiment 1, 172 from experiment 2, and
174 from experiment 3. F,, is air flow to the
alveolar spaces, F,, blood flow to the poorly
perfused tissue and K, the Michaclis-Menton
parameter for liver metabolism.

We have recently completed another study using
CART as the principal analytical tool
{Bisenberg, et al., 1995b} This investigation
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Figure 4: CART diagram for the giardia analysis. The number below the oval is the number of parameter
vectors routed to that node. The number within the oval is the proportion of these vectors associated with

ourbreak conditions,

involved characterizing the risk of infection from
enteric pathogens associated with swimming in
impoundments which receive treated municipal
wastewater. The model is epidemiological in
structure and is comprised of sub-popalations of
susceptible, immune, infected, and clinicaily il
individuals. In this case, calibration utilized
epidemiological data on the occumence of
giardiasis under background or non-putbreak
conditions where waterborne exposure was not
present. Parameter vectors consisieni with the
background constraints were then used in a full
simulation with waterborne exposure. The task
presented to CART was to determine the
parameters which were principally responsible for
outbreaks of the disease under conditions of
waterborne exposure,  Figure 4 shows the
resulting CART tree. Here Af is a2 parameter
associated with the shedding of cysts by infected
asymptomatic swimmers, By and Bg parameters
related to the intensity of water contact, and Tg a

treatment-related parameter. The outcome of the
analysis indicated that the risk of infection was
dominated by the direci exposure of swimmers to
pathogens shed by other swimmers and that the
water teclamation pathway was of concemn in
only very unusual conditions. For present
purposes, however, the CART applications
provided a glimpse of the potential power of
recent advances in computer-based multivariate
analysis.

5, Tree-Structured Density Estimation

In the context of the REA procedure, Beck [1987]
pointed out in his encyclopedic review of
uncertainty in water quality modeling that a
disadvantage of the approach was that" the
interpretation of the derived a posteriori
parameter distributions becomes more difficult as



the dimension of the parameter vector increases,
and for all practical purposes, it seems probable
that any conclusions will have to be restricted to
the propertics of the wunivariate and bivariate
marginal distributions.” This has certainly been
true in all of the RSA work conducted by our
group uitil the CART experience led us 1o invest
more heavily in acquiring greater expertise in the
area of computer-based multivariate analysis.
The methodological innovations 1 will now
describe are due to Dr. MNong Shang whose
doctoral work involved CART and mlated
methodologies onder one of its originators, Leo
Breiman at Berkeley.

Shang has argued that that the challenge of
describing the pass region beyond what can be
observed  from  the  univariale  marginal
distributions is best approached 25 & problem in
multivariate density estimation, The underlying
concept of his method involves the extension of
the concept of the variable Iength histogram to
myliple dimengions [Shang, 1993]. That is, the
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complex densigy of passes in the parameter space
is approximated by uniform densitics in local
regions, just as the histogram with variable
length does in 2 single dimension. The idea is
based on the following philosophy: if the density
is uniformly dismibuted in a local region
(including the extreme cases where the density is
equal to © to 1), then no further information
about the parameler and parameter interactions
can be extracted from the local region. The first
chaiflenge, however, is to find the local regions,

etermine their extent, and arrange them in some
systematic way.

Our first applications of this methodology
concerned the groundwater pathway of a
muttimedia fate, transport and exposure model
called MMSOQILS developed by the U.5. EPA
[Spear, et al., 1994]. The issue was to determine
witich parameters conirolied predictions  of
unacceptable Icvels of beazene in a drnking
water well 75 years in the future due to curment
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Figure 5 shows a tree from the MMSOILS study. The number in the circle is the density of points in the
space normalized to 1.00 which corresponds to the actual density determined by the total namber of points
divided by the volume of the original space. The splitting condition is shown under each circle and the
number on each line is the number of simulations sent o the next node. The squares are the terminal nodes
which are the subspaces where the algorithm has decided that the points within it appear homogeneous and
that it does not have sufficient resolation to proceed further.



site contamination. This study was more an
exploration of the method than the model, and it
was successful in that sensible results were
obtained and our experience showed that
theresulls are amenable fo inferpretation in
practice. Of particular note is that the trees that
describe the results can be used io direct
subsequent investigations of interesting parts of
the parameter space.

To explore the direcied search notion, we camied
out 2z further set of simulations targeted on
terminal node 3 on the exireme left of the tree
because that node has a relative density of 0.91,
almost equal to thai of the coriginal space. As
intuition would suggest, a greater number of
sample points in this subspace allowed the
algorithm to discern finer structure and several
new parameters appeared as important for the first
time.

6. Conclusions and Recommendations

Although much work remains to be done to
make the tree-structured deasity estimation
procedure 2 generally available tool, it appears
that it does have the properiies necessary o
describe the pass region in a practically useful
way. While its application in Monte Carlo
analyses grew out investigations using the RSA
procedure, | suggest that the perspective on
uniqueness that it offers is more generally
applicable. In dealing with the parameterization
of large simulation models, and by large T mean
with roughly 10 parameters of more, it seems
very likely that for almost any reasonable index
of goodness-of-fit, discrele or continuous, there
will be many parameter sets that give rise to fits
that are practically indistinguishable. Further,
many of these "good" parameter sets, judged fo
be so on the basis of fit to the calibration data,
will extend over the full range of plausible values
of each of its individual elements. To the extent
that this contention is ftrue, there are clear
Limitations on how one might interpret the
technical or scientific significance of any
particular set of parameters that lead 1o a good fit,
For large simulation models, it appears that we
must alter our traditional view and think of the
“pbest” parameter estimate as an extended and
complex region in a high dimensional space.
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